
Gold Audit
Deep Scan Mode Screening

The next generation of blockchain security

Penguin WAK
March, 12

2023

Gold



1

Cognitos provides due-diligence project audits for various proj-
ects. Cognitos in no way guarantees that a project will not 
remove liquidity, sell off teamsupply, or otherwise exit scam.

Cognitos does the legwork and provides public information 
about the project in an easy-to-understand format for the 
common person.

Agreeing to an audit in no way guarantees that a team will not 
remove all liquidity (“Rug Pull”), remove liquidity slowly, sell off 
tokens, quit the project, or completely exit scam. There is also no 
way to prevent private sale holders from selling off their tokens. 
It is ultimately your responsibility to read through all documen-
tation, social media posts, and contract code of each individual 
project to draw your own conclusions and set your own risk 
tolerance.

Cognitos in no way takes responsibility for any losses, nor does 
Cognitos encourage any speculative investments. The informa-
tion provided in this audit is for information purposes only and 
should not be considered investment advice. Cognitos does not 
endorse, recommend, support, or suggest any projects that 
have been audited. An audit is an informational report based on 
our findings, We BEP recommend you do your own research, we 
will never endorse any project to invest in.

The badge of Audit, KYC, Vetted and Safu is not a guarantee for 
safety. your reliance on a badge is solely at your own risk. we are not 
responsible for your investment loss and hereby expressly disclaim 
any liabilities that may arise from your use or reference of the badge.

Gold
Audit

Disclaimer



2

Disclaimer
Table of Content
Audit Scope

• Project Overview
• Token Data
• Security Detection
• Vulnerability Summary
• Vulnerability Scan
 Use Of Tx.origin
 Incorrect Access Control
 Unchecked Array Length
 Deleting A Mapping Within A Struct
 Incorrect Shift Assembly

• Weakness Classification

• Website Profiling
• Team Profiling

1
2
3

4
5
6
7
8

16

18
22

Gold
Audit

Table of content



3

Cognitos was comissioned by Penguin wak to perform an audit based on the 
following code:

https://bscscan.com/token/0x0b6d7735E0430D48675cba2955E87ccb0cD754cF#code

Note that we only audited the code available to us on this URL at the time of 
the audit. If the URL is not from any block explorer (main net), it may be sub-
ject to change. Always check the contract address on this audit report and 
compare it to the token you are doing research for.

Audit Method
Cognitos’s manual smart contract audit is an extensive methodical examina-
tion and analysis of the smart contract’s code that is used to interact with the 
blockchain. This process is conducted to discover errors, issues and security 
vulnerabilities in the code in order to suggest improvements and ways to fix 
them.

Automated Vulnerability Check
Cognitos uses software that checks for common vulnerability issues within 
smart contracts. We use automated tools that scan the contract for security 
vulnerabilities such as integer-overflow, integer-underflow, out-of-gas-situa-
tions, unchecked transfers, etc.

Manual Code Review
Cognitos’s manual code review involves a human looking at source code, line 
by line, to find vulnerabilities. Manual code review helps to clarify the context 
of coding decisions. Automated tools are faster but they cannot take the 
developer’s intentions and general business logic into consideration.

Audit
Scope

Audit Scope



https://baltotoken.com/

https://www.youtube.com/channel/UCMtr_dQ_JewZCcXue_dIy9g
https://www.instagram.com/baltotokenofficial/
https://twitter.com/baltotoken
https://discord.com/invite/balto-token-official
https://t.me/baltotokenofficial

Penguin innovations utilize blockchain technology alongside 
in-depth knowledge from its team to proffer solutions for effec-
tive management of finances in the crypto space. Backed by 
Decentralization and fully fledged DAO governance structure.

https://penguintoken.site/
https://t.me/penguinwakk
-
https://twitter.com/penguintoken2
https://medium.com/@penguinwak
-
-

Binance Smart Chain
0x0b6d7735E0430D48675cba2955E87ccb0cD754cF (verified)

4

Project Overview

Project 
Statement

Website & 
Social Media
• Website
• Telegram
• Discord
• Twitter
• Medium
• Instagram
• Youtube

Blockchain
• Network
• Contract

Penguin WAKName &
Logo



https://dxsale.app/dx-
lockview?id=0&add=0x7-
CA4D9587-
Cea435Af52545152fC6F71
b60be0d42&type=lplock&
chain=Arbitrum

5

Token Data
WAK 

Penguin WAK

0x0b6d7735E0430D48675cba2955E87ccb0cD754cF

v0.8.17+commit.8df45f5f

100,000,000,000 WAK 
 
18

0x1012732040842aff8b7f8ef8767a4e7fe72da1bc

0x8befb5fb7fa2db92a1e043559486d31c24bb648a

Token 
Symbol

Token Name

Contract 
Address

Compiler 
Version

Total Supply

Decimals

Contract 
Creator

Contract 
Owner



6

Security Detection
Risky Item

Attention 
Item

Contract 
Security

Honeypot 
Risk

Contract Verified

Proxy Contract

Mint Function

Retrieves Ownership Function

Authority to Change Balance

Hidden Owner

Self-destruct Function

External Call Risk

Appear to be a Honeypot

Suspend Trading Function

Can Sell all of the Token

Can be Bought

Trading Cooldown Function

Anti_whale Function

Tax Modified Function

Blacklist Function

Whitelist Function

Personal Addresses Tax Changes

Yes

No

Yes

No

Yes

No

No

No

No

Yes

Yes

Yes

No

Yes

Yes

Yes

No

No

2

3



-

Use Of Tx.origin

Incorrect Access Control
Unchecked Array Length
Deleting A Mapping Within A Struct
Incorrect Shift Assembly
Approve Front-running Attack

Internal Functions Never Used
Outdated Compiler Version
Use Of Floating Pragma
Long Number Literals
Missing Events

Hard-coded Address Detected
Unused Receive Fallback
Missing Indexed Keywords In Events
In-line Assembly Detected
Require With Empty Message
Block Values As A Proxy For Time
Presence Of Overpowered Role

7

Vulnerability Summary
Total
Findings

Severity
• Critical

• Major

• Medium

• Minor

• Info

0
1
5
5
7

Critical
Major
Medium
Minor
Informational

18



USE OF TX.ORIGIN

Severity    High
Confidence Parameter  Firm

In Solidity, tx.origin is a global variable that returns the address of the 
account that sent the transaction. Using the variable for authorization could 
make a contract vulnerable. For example, if an authorized account calls a 
malicious contract which triggers it to call the vulnerable contract that 
passes an authorization check since tx.origin returns the original sender of 
the transaction which in this case is the authorized account.

1497          emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,  

 tx.origin);

1633                  emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, true, gas,  

 tx.origin);

tx.origin should not be used for authorization in smart contracts. It does have 
some legitimate use cases, for example, To prevent external contracts from 
calling the current contract, you can implement a require of the form 
require(tx.origin == msg.sender). This prevents intermediate contracts from 
calling the current contract, thus limiting the contract to regular codeless 
addresses.

8

Vulnerability Scan

Vulnerability 
Description

Scanning 
Line:

Recommen-
dation:



Incorrect Access Control

Severity    Medium
Confidence Parameter  Firm

Access control plays an important role in segregation of privileges in smart 
contracts and other applications. If this is misconfigured or not properly 
validated on sensitive functions, it may lead to loss of funds, tokens and in 
some cases compromise of the smart contract.

The contract IUniswapV2Pair is importing an access control library @open-
zeppelin/contracts/access/AccessControl.sol but the function burn is miss-
ing the modifier onlyRole.

.730      function burn(address to) external returns (uint amount0, uint amount1);

The contract DividendPayingToken is importing an access control library 
@openzeppelin/contracts/access/Ownable.sol but the function withdrawD-
ividend is missing the modifier onlyOwner.

836    function withdrawDividend() public virtual override {

837      _withdrawDividendOfUser(payable(msg.sender));

838    }

The contract TokenDividendTracker is importing an access control library 
@openzeppelin/contracts/access/Ownable.sol but the function process is 
missing the modifier onlyOwner.

1102      function process(uint256 gas) public returns (uint256, uint256, uint256) {

1103          uint256 numberOfTokenHolders = tokenHoldersMap.keys.length;

1104  

1105          if(numberOfTokenHolders == 0) {

1106              return (0, 0, lastProcessedIndex);

1107          }

9

Vulnerability 
Description

Scanning 
Line:

Scanning 
Line:

 



1108  

1109          uint256 _lastProcessedIndex = lastProcessedIndex;

1110  

1111          uint256 gasUsed = 0;

1112  

1113          uint256 gasLeft = gasleft();

1114  

1115          uint256 iterations = 0;

1116          uint256 claims = 0;

1117  

1118          while(gasUsed < gas && iterations < numberOfTokenHolders) {

1119              _lastProcessedIndex++;

1120  

1121              if(_lastProcessedIndex >= tokenHoldersMap.keys.length) {

1122                  _lastProcessedIndex = 0;

1123              }

1124  

1125              address account = tokenHoldersMap.keys[_lastProcessedIndex];

1126  

1127              if(canAutoClaim(lastClaimTimes[account])) {

1128                  if(processAccount(payable(account), true)) {

1129                      claims++;

1130                  }

1131              }

1132  

1133              iterations++;

1134  

1135              uint256 newGasLeft = gasleft();

1136  

1137              if(gasLeft > newGasLeft) {

1138                  gasUsed = gasUsed.add(gasLeft.sub(newGasLeft));

1139              }

1140  

1141              gasLeft = newGasLeft;

1142          }

1143  

1144          lastProcessedIndex = _lastProcessedIndex;

1145  

1146          return (iterations, claims, lastProcessedIndex);

1147      }

10



The contract PenguinWAK is importing an access control library @openzep-
pelin/contracts/access/Ownable.sol but the function claim is missing the 
modifier onlyOwner.

1500      function claim() external {

1501          dividendTracker.processAccount(payable(msg.sender), false);

1502      }

The contract TokenDividendTracker is importing an access control library 
@openzeppelin/contracts/access/Ownable.sol but the function MAPRemove 
is missing the modifier onlyOwner.

1189      function MAPRemove(address key) public {

1190          if (!tokenHoldersMap.inserted[key]) {

1191              return;

1192          }

1193  

1194          delete tokenHoldersMap.inserted[key];

1195          delete tokenHoldersMap.values[key];

1196  

1197          uint index = tokenHoldersMap.indexOf[key];

1198          uint lastIndex = tokenHoldersMap.keys.length - 1;

1199          address lastKey = tokenHoldersMap.keys[lastIndex];

1200  

1201          tokenHoldersMap.indexOf[lastKey] = index;

1202          delete tokenHoldersMap.indexOf[key];

1203  

1204          tokenHoldersMap.keys[index] = lastKey;

1205          tokenHoldersMap.keys.pop();

1206      }

11

Scanning 
Line:

Scanning 
Line:

 



The contract TokenDividendTracker is importing an access control library 
@openzeppelin/contracts/access/Ownable.sol but the function MAPSet is 
missing the modifier onlyOwner.

1178      function MAPSet(address key, uint val) public {

1179          if (tokenHoldersMap.inserted[key]) {

1180              tokenHoldersMap.values[key] = val;

1181          } else {

1182              tokenHoldersMap.inserted[key] = true;

1183              tokenHoldersMap.values[key] = val;

1184              tokenHoldersMap.indexOf[key] = tokenHoldersMap.keys.length;

1185              tokenHoldersMap.keys.push(key);

1186          }

1187      }

The contract PenguinWAK is importing an access control library @openzep-
pelin/contracts/access/Ownable.sol but the function processDivi-
dendTracker is missing the modifier onlyOwner.

1495      function processDividendTracker(uint256 gas) external {

1496          (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) = dividendTracker.pro 

 cess(gas);

1497          emit ProcessedDividendTracker(iterations, claims, lastProcessedIndex, false, gas,  

 tx.origin);

1498      }

It is recommended to go through the contract and observe the functions that 
are lacking an access control modifier. If they contain sensitive administra-
tive actions, it is advised to add a suitable modifier to the same

12

Scanning 
Line:

Scanning 
Line:

 

Recommen-
dation:



Unchecked Array Length

Severity    Medium
Confidence Parameter  Tentative

Ethereum is a very resource-constrained environment. Prices per computa-
tional step are orders of magnitude higher than with centralized providers. 
Moreover, Ethereum miners impose a limit on the total number of Gas con-
sumed in a block. If array.length is large enough, the function exceeds the 
block gas limit, and transactions calling it will never be confirmed.
for (uint256 i = 0; i < array.length ; i++) { cosltyFunc(); }
This becomes a security issue, if an external actor influences array.length.
E.g., if an array enumerates all registered addresses, an adversary can regis-
ter many addresses, causing the problem described above.

1377          for(uint256 i = 0; i < accounts.length; i++) {

Either explicitly or just due to normal operation, the number of iterations in a 
loop can grow beyond the block gas limit, which can cause the complete 
contract to be stalled at a certain point. Therefore, loops with a bigger or 
unknown number of steps should always be avoided.

13

Vulnerability 
Description

Scanning 
Line:

Recommen-
dation:

 



Deleting A Mapping Within A Struct

Severity    Medium
Confidence Parameter  Tentative

The contract was found to be using a mapping (X) containing a struct (Y). 
This struct also contains another mapping (Z).
The vulnerability arises when the an item is deleted from mapping (X). This 
does not delete data from mapping (Z). The remaining data may compro-
mise the contract

1194          delete tokenHoldersMap.inserted[key];

1195          delete tokenHoldersMap.values[key];

1202          delete tokenHoldersMap.indexOf[key];

A lock mechanism should be implemented instead of deletion to disable the 
struct containing the mapping.

14

Vulnerability 
Description

Scanning 
Line:

Recommen-
dation:

 



Incorrect Shift In Assembly

Severity    Medium
Confidence Parameter  Tentative

Assembly usage in smart contracts should be done with utmost case as 
these statements bypass certain security checks and most of the times are 
more difficult to implement than a normal solidity code.
The shift statement in assembly (shr, sar, or shl) uses two parameters inside 
itself. The first argument defines the number of shifts and the second one 
defines the parameter on which the shift is to happen. These values should 
not be reversed as this will change the logic of the contract.
The contract is using shl(x,y) inside the assembly.

214              mstore(add(ptr, 0x14), shl(0x60, implementation))

232              mstore(add(ptr, 0x14), shl(0x60, implementation))

252              mstore(add(ptr, 0x38), shl(0x60, deployer))

It is recommended to go through the assembly usage in the code to make 
sure that the parameters passed in the shift operations used in the contract 
are in the correct order.

15

Vulnerability 
Description

Scanning 
Line:

Recommen-
dation:

 



16

Weakness Classification

CTS 
018

CTS 
000

CTS 
001

CTS 
002

CTS 
003

CTS 
004

CTS 
005

CTS 
006

CTS 
007

CTS 
008

CTS 
009

CTS 
010

CTS 
011

CTS 
012

CTS 
013

CTS 
014

CTS 
015

CTS 
016

CTS 
017

PassedIncorrect Constructor 
Name

AI Scan Human
Review Result

PassedFunction Default  Visibil ity

PassedInteger Overflow and 
Underflow

PassedOutdated Compiler Ver-
sion

PassedFloating Pragma

PassedUnchecked Call  Return 
Value

PassedUnprotected Ether With-
drawal

PassedUnprotected SELFDESTRUCT
Instruction

PassedReentrancy

PassedState Variable Default  
Visibil ity

PassedUninitialized Storage 
Pointer

PassedAssert Violation

PassedUse of Deprecated Solidity 
Functions

PassedDelegatecall  to Untrusted 
Callee

PassedDoS with Failed Call

PassedTransaction Order 
Dependence

PassedAuthorization through 
tx.origin

PassedBlock values as a proxy for 
t ime

PassedSignature Malleabil ity

LOW



17

CTS 
019

CTS 
020

CTS 
021

CTS 
022

CTS 
023

CTS 
024

CTS 
025

CTS 
026

CTS 
027

CTS 
028

CTS 
029

CTS 
030

CTS 
031

CTS 
032

CTS 
033

CTS 
034

CTS 
035

CTS 
036

PassedShadowing State Variables

PassedWeak Sources of Random-
ness from Chain Attributes

PassedMissing Protection against
Signature Replay Attacks

PassedLack of Proper Signature 
Verif ication

PassedRequirement Violation

Passed
Write to Arbitrary Storage 
Location

Passed
Incorrect Inheritance Order

Passed
Insufficient Gas Griefing

Passed
Arbitrary Jump with Func-
tion Type Variable

Passed
DoS With Block Gas Limit

Passed
Typographical Error

Passed
Right-To-Left-Override 
control  character (U+202E)

Passed
Presence of unused varia-
bles

Passed
Unexpected Ether balance

Passed
Hash Coll isions With Multi-
ple Variable Length Argu-
ments

Passed
Message call  with hardcod-
ed gas amount

Passed
Code With No Effects

Passed
Unencrypted Private Data 
On-Chain

AI Scan Human
Review Result



Normalized URL   http://penguintoken.site:80
Submission date   Sun Mar 12 10:41:14 2023
Server IP address   199.188.200.245
Country    United States
Web Server    LiteSpeed
Malicious files    0
Suspicious files   0
Potentially Suspicious files  0
Clean files    91
External links detected  265
Iframes scanned   21
Blacklisted    No

Malicious files    0
Suspicious files   0
Potentially Suspicious files  0
Clean files    91

18

Website Security
Security 
Detection

Sitescan 
Report

Scanned 
files analysis

Minimal Low Security Risk Medium High Critical

Our automated scan did not detect malware on your site.



No malware detected by scan (Low Risk)

No injected spam detected (Low Risk)

No defacements detected (Low Risk)

No internal server errors detected (Low Risk)

Domain clean by Google Safe Browsing

Domain clean by McAfee

Domain clean by Sucuri Labs

Domain clean by ESET

Domain clean by PhishTank

Domain clean by Yandex

Domain clean by Opera

19

Malware 
Checked

Blacklist 
Checked



penguintoken.site resolves to 199.188.200.245
   
The certificate should be trusted by all major web browsers

The certificate was issued by Sectigo. 
  
The certificate will expire in 117 days. 

The hostname (penguintoken.site) is correctly listed in the certificate.

20

SSL Checked

Common name: penguintoken.site
SANs: penguintoken.site, www.penguintoken.site
Valid from July 6, 2022 to July 7, 2023
Serial Number: 7ebd21f07840722679765809d10e2c4e
Signature Algorithm: sha256WithRSAEncryption
Issuer: Sectigo RSA Domain Validation Secure Server CA
  
Common name: Sectigo RSA Domain Validation Secure Server CA
Organization: Sectigo Limited
Location: Salford, Greater Manchester, GB
Valid from November 1, 2018 to December 31, 2030
Serial Number: 7d5b5126b476ba11db74160bbc530da7
Signature Algorithm: sha384WithRSAEncryption
Issuer: USERTrust RSA Certification Authority

Common name: USERTrust RSA Certification Authority
Organization: The USERTRUST Network
Location: Jersey City, New Jersey, US
Valid from March 11, 2019 to December 31, 2028
Serial Number: 3972443af922b751d7d36c10dd313595
Signature Algorithm: sha384WithRSAEncryption
Issuer: AAA Certificate Services

Server

Chain 1

Chain 2



21

Technology
Profiler

CMS     WordPress 6.1.1

Blogs     WordPress 6.1.1

Miscellaneous    Webpack 50% sure
     Module Federation 50% sure

Web servers    LiteSpeed

Programming languages  PHP

Databases    MySQL

Page builder    Elementor 3.11.3

WordPress plugins   Elementor 3.11.3
     WP-Optimize

Performance    WP-Optimize



22

Dev & Team Informations
Team Data We found developer and team information on the website

Soud Altukhaim
PenguinWak Founder
linkedin.com/in/soud-altukhaim-b652bab9/
t.me/penguinwakt

Piyanut Wonglakhon
Blockchain Advisor
linkedin.com/in/piyanut-wonglakhon-a353171a6/
penguintoken.site/wp-content/uploads/2023/02/Piyanut-Wonglakhon-BIO.html

Denis Lukavackic
Website Developer
linkedin.com/in/denis-lukavackic-1b3338106/
penguintoken.site/wp-content/uploads/2023/02/Denis-Lukavackic-BIO.html

Damir Lukavačkić
Marketing Advisor
linkedin.com/in/damir-lukavackic-057828240/
penguintoken.site/wp-content/uploads/2023/02/Damir-Lukavackic-BIO.html

Dominic Gregory
Research Manager
linkedin.com/in/dominic-agboh-63b5841a9/
twitter.com/GregoryOkwudili
penguintoken.site/wp-content/uploads/2023/02/Dominics-CV.pdf

Agbaje Mubarak
Project Designer
twitter.com/agbaje_mubarak
t.me/agbajeTech

Piyachai Wonglakon
Token Advisor
linkedin.com/in/piyachai-wonglakon-44a3071a6/
penguintoken.site/wp-content/uploads/2023/02/PIYACHAI-WONGLAKON-BIO.html

Damir Hajdič
Community Manager
linkedin.com/in/damir-hajdi%C4%87-93548918b/
penguintoken.site/wp-content/uploads/2023/02/Damir-Hajdic-ALL-INFO-with-links.html



The next generation of blockchain security

Cognitos Project Audit has been com-
pleted for Penguin WAK - BSC

Block number : 0000078

This result is only valid if viewed on
www.cognitos.io


